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Abstract Two exponentially fitted two-derivative Runge–Kutta pairs for the numeri-
cal integration of the Schrödinger equation are presented in this paper. The asymptotic
expressions of the local errors for large energies are given. The numerical results in
the integration of the radial Schrödinger equation with the Woods–Saxon potential
and the Lennard-Jones potential show the high efficiency of our new methods when
compared with some famous optimized codes in the literature.

Keywords Two-derivative Runge–Kutta method · Schrödinger equation ·
Error analysis

1 Introduction

In this paper we are interested in effective integration of the one-dimensional
Schrödinger equation

ϕ′′(x) =
(

l(l + 1)

x2
+ V (x) − E

)
ϕ(x), (1)
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in which l(l+1)
x2

is called the centrifugal potential and the function V (x) is the potential
satisfying V (x) → 0 as x → ∞. E is a real number which is called the energy and
the function W (x) = l(l+1)

x2
+ V (x) is denoted as the effective potential, for which

W (x) → 0 if x → 0. Two boundary conditions are associated with this equation: one
is ϕ(0) = 0 and the other imposed at large x is determined by physical considerations.
This type of equations often appear in scientific fields such as nuclear physics, quantum
chemistry,molecular physics and so forth.There havebeen a largenumber of numerical
methods for the solution of the Schrödinger equation (1) (see Refs. [1–42]), most of
which belong to the class of multi-step and hybrid methods. Compared with multi-
step methods whose implementation requires a series of starting values, Runge-Kutta
(-Nyström)-type methods are favorable because the initial values that are available are
sufficient for them to run. Recently, Chan et al. [43] investigated the two-derivative
Runge–Kutta (TDRK) methods which incorporate the second-order derivative in the
scheme and promise a higher efficiency. On the other hand, regarding the oscillatory
character of the solution to the Schrödinger equation (1), there have appeared a lot
of numerical integrators of adapted type, a pronounced class of which is based on
important properties such as exponentially/trigometrically fitted or phase optimized
properties (see Ref. [44–84]).

The purpose of this paper is to construct practical optimized two-derivative
Runge–Kutta (TDRK) pairs for the numerical integration of the radial Schrödinger
equation (1). Section 2 presents the basic elements of TDRK methods and the idea of
exponential fitting methods. In Sect. 3, we construct two exponentially fitted TDRK
pairs for the numerical integration of the Schrödinger equations. In Sect. 4 we analyze
the asymptotic expressions errors for the newmethods. Numerical results are reported
in Sect. 5 to show the effectiveness and competence of our new methods when they
are applied to the resonant-state problem of the Woods–Saxon potential with fixed
step-size and the Lennard-Jones potential with variable step-size. Section 6 is devoted
to conclusions.

2 Basic theory

2.1 Two-derivative Runge–Kutta methods

For the numerical solution of first-order differential equation

y′(x) = f (x, y), y(x0) = y0, (2)

we consider a special form of two-derivative Runge–Kutta (TDRK) methods studied
by Chan et al. [43]⎧⎪⎪⎨

⎪⎪⎩
Yi = yn + ci h f (xn, yn) + h2

s∑
j=1

ai j g(xn + c j h, Y j ), i = 1, . . . , s,

yn+1 = yn + h f (xn, yn) + h2
s∑

i=1
bi g(xn + ci h, Yi ),

(3)

where g(x, y) = y′′(x) := ∂ f (x,y)
∂x + ∂ f (x,y)

∂y f (x, y).
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The coefficients of the TDRK method can be expressed by the Butcher tableau

c A

bT
=

c1 a11 … a1s
...

...
. . .

...

cs as1 · · · ass

b1
· · ·

bs

or can be denoted simply by (c, A, b). This special type of TDRK methods involve
only one evaluation of function f and s evaluations of function g per step. The order
conditions are obtained by Chan et al. [43].

It should be noted that the embedded q(p) pair of TDRK method is based on the
TDRK method (c, A, b) of order q and another TDRK method (c, A, b̄) of order
p (p < q). An embedded pair can be characterized by Butcher tableau

c A

bT

b̄T

Embedded pairs of explicit TDRK methods are widely used in variable step-size
algorithms for their cheap error estimations. For embedded methods, an estimate in
the integration point xn+1 = xn + h has the following expression

E STn+1 = ‖yn+1 − ȳn+1‖,

which can be used to control the step-size for the numerical integration of the
Schrödinger equation by the well known control procedure [45]

– if E STn+1 < T ol
100 , hn+1 = 2hn ,

– if T ol
100 ≤ E STn+1 < T ol, hn+1 = hn ,

– if E STn+1 ≥ T ol, hn+1 = hn
2 and repeat the step,

in which T ol is the maximum allowable local error.
In order to apply the scheme (3) to the problem (1), one has to transform the second-

order ODE (1) into a form of first-order system (2) with y = (ϕ, ψ)T , ψ = ϕ′, and

f (x, y) =
(

ψ(x)

(W (x) − E) ϕ(x)

)
. (4)

Therefore, for the scheme (3), we have

g(x, y) =
(

(W (x) − E)ϕ(x)

(W (x) − E)ψ(x) + ϕ(x)W ′(x)

)
. (5)
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2.2 Exponentially fitted TDRK methods

The method (3) is related to the operator

L[u](x) = u(x + h) − u(x) − hu′(x) −
s∑

i=1

bi u
′′(x + ci h, ui ),

ui = u(x) + ci hu′(x) +
i−1∑
j=1

ai j u
′′(x + c j h, u j ), (6)

in which u is a continuously differentiable function.

Definition 2.1 [40–42] The method (6) is called exponential of order p if the related
linear operator L vanishes for any linear combination of the linearly independent
functions

{
exp(ω0x), exp(ω1x), . . . , exp(ωpx)

}
,

where ωi , i = 0, . . . , p are real or complex numbers.

Remark 2.1 [40–42] If ωi = ω for i = 0, 1, . . . , n, n ≤ p, then the operator L
vanishes for any linear combination of

{exp(ωx), x exp(ωx), x2 exp(ωx), . . . , xn exp(ωx), exp(ωn+1x), . . . , exp(ωpx)}.

For the construction of the new methods, we give the following theorem.

Theorem 2.1 Method (3) is of exponential order p if

cos(ν) = 1 +
s∑

k=1

(−1)kν2kbT Ak−1e,

sin(ν) = ν +
s∑

k=1

(−1)kν2k+1bT Ak−1c, (7)

in which ν = ωl h for l = 0, 1, . . . , p.

Remark 2.2 If ωr = ωq = ω, for q, r ∈ 0, 1, . . . , p then the following conditions
should be added

− sin(ν) =
s∑

k=1

(−1)k2kν2k−1bT Ak−1e,

cos(ν) = 1 +
s∑

k=1

(−1)k(2k + 1)ν2kbT Ak−1c. (8)
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Based on the above results, we shall construct two six-order exponentially fitted
TDRK methods as well as two exponentially fitted TDRK pairs for the numerical
integration of the Schrödinger equation.

3 Construction of the new methods

In this section, we consider the following embedded pair of TDRK 6(5) methods with
the following tableau:

0
1
3

1
18

1
3

1
8

2
3

1
9

1
9

4
5

−2
125

42
125

11
120

9
20

−4
15

9
40 0

5
48

9
28 0 0 25

336

(9)

Based on this TDRK pair, we shall construct two kinds of EFTDRK pairs with
exponential order one and two.

3.1 Two sixth order EFTDRK methods

In this section, we present two sixth-order EFTDRK methods based on the classical
sixth-order TDRK method given in (9).

3.1.1 First six-order EFTDRK method

First we set free b1 and b2 while keeping the rest of the coefficients. Then we require
the first method to integrate exactly the linear combination of the functions

{cos(ωx), sin(ωx)} .

To achieve this goal, we demand the new method to integrate exactly exp(iωx) for
real and imaginary part. From (7) and (9), we have

cos(ν) = 1 − ν2bT e + ν4bT Ae − ν6bT A2e,

sin(ν) = ν − ν3bT c + ν5bT Ac − ν7bT A2c.

Solving these two equations, we have

b1 = −
(
720ν − 93ν3 + 4ν5 + 360ν cos(ν) + 60 sin(ν)(ν2 − 18)

) / (
360ν3

)
,

b2 =
(
−2ν3 + 120ν + ν5 − 120 sin(ν)

) / (
40ν3

)
, ν = ωh.
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For small values of |ν|, the Taylor series of b1 and b2 are given by

b1 = 11

120
− ν4

1680
+ ν6

60480
− 31ν8

119750400
+ ν10

389188800
− 23ν12

130767438000
+ · · · ,

b2 = 9

20
+ ν4

160
− ν6

120960
+ ν8

13305600
− ν10

2075673600
+ ν12

435891456000
+ · · · .

It can be verified straightly that previous coefficients satisfy all the sixth order
conditions given by Chan et al. [43]. We denote this method as EFTDRK6I.

3.1.2 Second six-order EFTDRK method

We require the second method to integrate exactly the linear combination of the func-
tions

{cos(ωx), sin(ωx), x cos(ωx), x sin(ωx)} .

To achieve this goal, we set free b1, b2, b3 and b4 while keeping the rest of the
coefficients. Then we demand the new method to integrate exactly

{exp(iωx), x exp(iωx)}

for real and imaginary part. From (7–9), we have

cos(ν) = 1 − ν2bT e + ν4bT Ae − ν6bT A2e,

sin(ν) = v − ν3bT c + ν5bT Ac − ν7bT A2c,

− sin(ν) = −2νbT e + 4ν3bT Ae − 6ν5bT A2e,

cos(ν) = 1 − 3ν2bT c + 5ν4bT Ac − 7ν6bT A2c.

From these four equations we obtain

b1 =
(
2ν

(
18 − 24ν2 + ν4

)
+ ν

(
−198 − 30ν2 + ν4

)
cos(ν)

+
(
162 + 6ν2 − 9ν4

)
sin(ν)

) /
12ν5,

b2 = −3
(
−4ν(3 + ν2) + ν2(ν2 − 42) cos(ν) − 9(ν2 − 6) sin(ν)

) /
2ν2,

b3 = 2
(
−24ν + ν(ν2 − 30) cos(ν) + (54 − 7ν2) sin(ν)

) /
ν5,

b4 = 27(2ν + ν cos(ν) − 3 sin(ν))
/
2ν5. (10)

For small values of |ν|, their Taylor series are given by

123



1476 J Math Chem (2015) 53:1470–1487

b1 = 11

120
+ ν2

280
+ ν4

4480
− 233ν6

9979200
+ 191ν8

296524800
− 1813ν10

19813248000
, · · · ,

b2 = 9

20
− 3ν4

140
+ ν4

1344
− 17ν6

1108800
+ 67ν8

345945600
− 59ν10

36324288000
+ · · · ,

b3 = − 4

15
+ ν2

35
− ν4

840
+ 31ν6

1247400
− ν8

3243240
+ 23ν10

9081072000
+ · · · ,

b4 = 9

40
− 3ν2

280
+ ν4

4480
− ν6

369600
+ ν8

46126080
− ν10

8072064000
+ · · · .

It can be checked straightly that previous coefficients satisfy all the sixth order
conditions given by Chan et al. [43]. We denote this method as EFTDRK6II.

3.2 Two EFTDRK 6(5) pairs

3.2.1 The first EFTDRK 6(5) pair

Based on the sixth order exponentially fitted TDRK method EFTDRK6I, in this sec-
tion, we shall give the first EFTDRK 6(5) method. we require the lower order method
to integrate exactly the linear combination of the functions

{cos(ωx), sin(ωx)},

and we obtain

b∗
1 = −1440ν + 195ν3 − 8ν5 − 720ν cos(ν) + 2160 sin(ν) − 120ν2 sin(ν)

720ν3
,

b∗
2 = 840ν + 50ν3 + 7ν5 − 840 sin(ν)

280ν3
.

For small values of |ν|, their Taylor series are given by

b∗
1 = 5

48
− ν4

1680
+ ν6

60480
− 31ν8

119750400
+ ν10

389188800
− 23ν12

130767438000
, · · · ,

b∗
2 = 9

28
+ ν4

160
− ν6

120960
+ ν8

13305600
− ν10

2075673600
+ ν12

435891456000
+ · · · .

It can be verified straightly that the coefficients satisfy all the fifth order conditions
given by Chan et al. [43]. We denote this new EFTDRK pair as EFTDRK6(5)I.

3.2.2 The second EFTDRK 6(5) pair

In this section, we shall present the first EFTDRK 6(5) method based on the sixth
order EFTDRK method EFTDRK6II. we require the lower order method to integrate
exactly the linear combination of the functions
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{cos(ωx), sin(ωx), x cos(ωx), x sin(ωx)}.

Weset free b1, b2, b3 and b4 while keeping the rest of the coefficients. Thenwe demand
the new method to integrate exactly {exp(iωx), x exp(iωx)} for real and imaginary
part. From these four equations we obtain

b∗
1 =

(
ν

(
720 − 960ν2 + 43ν4

)
+ 20ν

(
ν4 − 30ν2 − 198

)
cos(ν)

−60
(
3ν4 − 2ν2 − 54

)
sin(ν)

) /
240ν5,

b∗
2 =

(
1260ν + 420ν3 − 9ν5 − 105(ν2−42) cos(ν) + 945

(
ν2−6

)
sin(ν)

) /
240ν5,

b∗
3 =

(
4ν

(
ν4 − 180

)
+ 30ν

(
ν2 − 30

)
cos(ν) − 30

(
7ν2 − 54

)
sin(ν)

) /
15ν2,

b∗
4 = −9

(
−120ν + ν5 − 60ν cos(ν) + 180 sin(ν)

) /
(40ν5).

For small values of |ν|, their Taylor series are given by

b∗
1 = 5

48
+ ν2

280
+ ν4

4480
− 233ν6

9979200
+ 191ν8

296524800
+ 28837ν10

355687428096000
+ · · · ,

b∗
2 = 9

28
− 3ν2

140
+ ν4

1344
− 17ν6

1108800
+ 67ν8

345945600
− 59ν10

36324288000
+ · · · ,

b∗
3 = 0 + ν2

35
− ν4

840
+ 31ν6

1247400
− ν8

3243240
+ 23ν10

9081072000
+ · · · ,

b∗
4 = 0 − 3ν2

280
+ ν4

4480
− ν6

369600
+ ν8

46126060
− ν10

8072064000
+ · · · .

It can be verified straightly that the coefficients satisfy all the fifth order conditions
given by Chan et al. [43]. We denote this new pair as EFTDRK6(5)II.

4 Error analysis

In this section, we carry out the error analysis of the new methods derived in Sect. 3
based on the approach ofAnastassi and Simos [41,42]. It is not necessary to investigate
the error of the fifth order method since it is not responsible for the propagation of the
error. We only consider the error analysis of the sixth order methods. Our interest lies
mainly in solving the Schrödinger equation. So we will follow the approach of Ixaru
and Rizea [39] which was put forward for exponentially fitted Numerov method to
find the asymptotic expressions for large energy solving Schrödinger equation. The
numerical performance of the method is crucially influenced by the fitted frequency
ν. We make a reasonable choice of “local” estimate of frequency in the following
way: Divide [0,∞] into some subinterval [xi , xi+1], so that the W (x) is considered
to be a constant which is approximated by W̄ . Then the problem (1) reduces to the
approximation ϕ′′

i = (W̄ − E)ϕi whose general solution is given by

123



1478 J Math Chem (2015) 53:1470–1487

ϕi (x) = C1 exp
(
i
√

E − W̄ x
)

+ C2 exp
(
−i

√
E − W̄ x

)
, C1, C2 ∈ C.

Hence, a proper fitting frequency ω in each interval [xi , xi+1] is chosen as ω =√
E − W̄ . The error vectors (one component for ϕ(x) and the other for ψ(x)) for the

classical TDRKmethods and the two newmethods EFTDRK6I and EFTDRK6II have
the following expressions for large values of |E |:

LTE(CLASSICAL) ≈ h7

5040

(−ψ(x)E3

ϕ(x)E4

)
,

LTE(EFTDRK6I) ≈ h7

5040

(( − 8ϕ(x)W ′(x) + 2ψ(x)ΔW
)
E2

−2ϕ(x)ΔW E3

)
,

LTE(EFTDRK6II) ≈ h7

5040

(
2ϕ(x)W ′(x)E2(

9ϕ(x)W ′′(x) + 2W ′(x)ψ(x) + ΔW 2ϕ(x)
)
E2

)
.

where ΔW = W (x) − W̄ .

For the purpose of error comparison,weobserve that the global error onϕ andψ pro-
duced by the classical TDRK method is in proportional with E3 and E4, respectively.
The global error on ϕ andψ produced by the EFTDRK6I method is increased with E2

and E3, respectively.While the increase of the global error on ϕ andψ produced by the
EFTDRK6II method is in proportion with E2 and E2, respectively. We can conclude
that the method EFTDRK6II is the most efficient method for the Schrödinger equation
with large |E | since the increase of the global error is the smallest.

5 Numerical experiments

5.1 Comparisons with fixed step-size

For comparison we select the following Runge-Kutta type methods:

– EFTDRK6I: the first higher order exponentially fitted two-derivative RK method
of the new pairs derived in Sect. 3.1.1.

– EFTDRK6II: the second higher order exponentially fitted two-derivative RK
method of the new pairs derived in Sect. 3.1.2.

– PHRK5S: the higher order method of the phase-fitted RK pair of Simos [4].
– MPHRK5V: the higher order method of the phase-fitted RK pair of Van de Vyver
[34].

– MORK5V: the higher order method of the optimized RK pair of Van de Vyver
[37].

– RK5EXP2MCM: the exponentially fitted fifth order RK method with exponential
order two derived by Simos [41].

– RK5EXP2JMC: the exponentially fitted fifth order RK method with exponential
order two derived by Simos [42].
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We consider the numerical integration of the Schrödinger equation (1) with the
well-known Woods–Saxon potential

V (x) = c0z
(
1 − a(1 − z)

)
,

where z =
(
exp

(
a(x − b) + 1

))−1
, c0 = −50, a = 5/3, b = 7. We put l = 0 in

(1). The problem is solved in the interval [0,15].
The so-called resonance problem is to find those energies E ∈ [0, 1000] for which

the phase shift is equal to π/2. The boundary conditions for this problem are given
by

y(0) = 0 and y(x) = cos
(√

Ex
)

for large x .

In order to determine the eigenvalues E we use the shooting strategywhich involves
an iteration process. In short, this strategy consists of integrating forwards from the
point x = 0, backwards from the point x = xend and then matching up the solution
at some intermediate point x = xc. Here the matching point is taken as xc = 6.5.
Following Van de Vyver [34] and Ixaru et al. [39], we choose the fitting frequency as

ω =
{√

50 + E, x ∈ [0, 6.5],√
E, x ∈ [6.5, 15].

For technical details, the reader is referred to Blatt [5].
The numerical results obtained by the RK-typemethods are compared with the ana-

lytic solution of the Woods–Saxon potential. In Figs. 1, 2, 3 and 4, we plot the error
log10 |Eanalytical − Ecalculated| versus the computational effort by the number of func-
tion evaluations (FUNCTION EVALUATIONS) and the cpu times (CPU SECONDS)
required by each method for Eanalytical = 53.588872, 163.215341, 341.495874,
989.701916, respectively.

In view of the Figs. 1, 2, 3 and 4, we observe that EFTDRK6II is superior to all the
other methods, especially for larger energy E .

5.2 Comparison with some embedded pairs

In this experiment we compare the following five embedded Runge–Kutta-type pairs:

– PHARK5(4)S: the phase-fitted embedded RK 5(4) pair derived by Simos in [4].
– MODPHARK5(4)V: the modified phase-fitted embedded RK 5(4) pair given by
Van de Vyver in [34].

– MORK5(4)V: the optimized embedded RK 5(4) pair derived by Van de Vyver in
[37].

– EFTDRK6(5)I: the new pair derived in Sect. 3.2.1.
– EFTDRK6(5)II: the new pair derived in Sect. 3.2.2.
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Fig. 1 Efficiency curves for E = 53.588872
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Fig. 2 Efficiency curves for E = 163.215341
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Fig. 3 Efficiency curves for E = 341.495874

Here we consider the numerical integration of the Schrödinger equation (1) with
the Lennard-Jones potential of wide interest (see [34])

v(x) = l(l + 1)

x2
+ 500

(
1

x12
− 1

x6

)
.
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Fig. 6 Efficiency curves for k = 100

We compute the phase-shifts correct to four decimal places for the energies k2 =
100 and k2 = 10000, respectively. The fitting frequency is taken as ω = k. For the
calculation of the phase-shifts, we plot the number of function evaluations and the cpu
times as a function of l = 0, . . . , 10 in Fig. 5 (k2 = 100) and in Fig. 6 (k2 = 10000).
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Form Figs. 5 and 6, we conclude that our new EFTDRK pair EFTDRK6(5)II is the
most efficient.

5.3 The choice of frequency for oscillatory problems

In this section, we address the question of evaluating the fitting frequency for trigono-
metrically/exponentially fitted integrators solving oscillatory problems. Generally
speaking, if the principal frequency or an estimate of the principal frequency of the
problem is available, it is reasonable to take it as the fitting frequency. However, in
most cases, the principal frequency is not easy to obtain or estimate and the topic
of how to choose the most suitable fitting frequency for the trigonometrically fitted
methods has been a challenge.Some interesting strategies can be found in the recent
literature [75–77].

Here we try to propose a new method-dependent approach. The fitting frequency
is calculated by vanishing the leading term of the local error of the method. To be
specific, take themethod EFTDRK6I derived in Sect. 3.1.1 for an example (themethod
EFTDRK6II can be considered in a similar way). The local truncation errors of the
method EFTDRK6I is

LTE(EFTDRK6I) = y(7)(x) − ω4y(3)(x)

5040
h7 + O(h8). (11)

Therefore, at every step a suitable choice for ω can be chosen as

ω4
n = y(7)(xn)

y(3)(xn)
. (12)

Problem 5.1 We consider the inhomogeneous problem in [75]

y′′ + y = εy3, y(0) = 1, y′(0) = 0, (13)

to be solved in the interval [0, 20π ]. When ε is very small, the solution of the problem
(13) is close to that of the problem

y′′ + y = 0, y(0) = 1, y′(0) = 0, (14)

Therefore the principal frequency of the problem (13) is (approximately) ω = 1.
Usually this frequency ω = 1 is taken as a fitting frequency. In Fig. 7, we show
the growth of the error y(xn) − yn produced by the method EFTDRK6I solving
the problem (13) for ε = 10−3 with ω = 1 (on the left) and ωn determined by
(12) (on the right), respectively, with the step-size h = 0.01. We can see that the
method EFTDRK6I gives almost the same global error for both the two versions of
fitting frequency. However, the following example shows the advantages of our new
policy.
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Fig. 7 Errors shown using the frequency ω = 1 (left) and ω obtained by (12) (right)

Fig. 8 Errors shown using the frequency ω = 0.847213085 (left) and ω obtained by (12) (right)

Problem 5.2 Consider the nonlinear cubic oscillators given in [76]

y′′ = −y3, y(0) = 1, y′(0) = 0, (15)

with exact solution y(x) = cn(x, 1/2), in which cn is the Jacobi elliptic function and
the exact frequency of the solution is

ω = 1

4
K (1/2) = 0.847213085

where K is the complete elliptical integral of the first kind. In Fig. 7, we plot the error
of y(xn)− yn in the interval [0, 20π ] obtained by the EFTDRK6I method for problem
(15) with ω = 0.847213085 (on the left) and ω chosen by (12) (on the right) with the
step-size h = 0.01.

From Fig. 8, we observe that the method EFTDRK6I is more accurate with the
fitting frequency determined by (12) than with the usual choice of the frequency
ω = 0.847213085.

Another adopted strategy can be based on the optimization of the error of the total
energy by the golden section search technique.

6 Conclusions

In this paper, two exponentially fitted two-derivative Runge–Kutta (EFTDRK) meth-
ods aswell as EFTDRKparis for the numerical integration of the Schrödinger equation
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are presented in this paper. The asymptotic expressions of the local errors for large
energies are obtained. We have compared our new methods with some optimized
(exponentially fitted or phase-fitted) RK methods for the numerical solution of the
Schrödinger equation. The analysis of the asymptotic expressions of the local errors
for large energies suggest theoretical advantages of the newly constructed TDRK
methods. And when applied to the radial time-independent Schrödinger equation with
the Woods–Saxon potential and the Lennard-Jones potential, they are shown to out-
perform some highly effective codes in the literature, especially in the case of higher
resonance. The special structure involving the second-order derivative and the opti-
mized exponential fitting property are responsible to the excellent behavior of the new
methods. Finally, we discuss the choice of the frequency for the method EFTDRK6I
solving oscillatory problems. A reasonable frequency is obtained by vanishing the
local truncation error. Another possible way of determining the fitting frequency is by
minimizing the error of the total energy. We will continue this research in the future.
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